
--- .-- . ', .

-720

T- Lh 20.-70 - "

T -HE VARIATION --lOF SOLAR -PROTON", ENERGY SPECTRA ----

ANDSIZE DISTRIBUTION

-1. >--~. ~ AITL -

-ITH H1OLILONG-ITUDE _

_ VA .. .- '- -

-L, S. A :)SU NG--

:7-

. ... . " < .. ,.. . .. ,- -IJ' -..L. j.'

" " -- - -.
Nl L. S;AS.Jq~< _--

WITH HELIOONGITUDE (NASA) 72 p HC ,\

NG3/93, 53018

. .- __.<. L "- -

(NasA Tai-x-70770) THE VARITIN OF SOLAR N75-10899
PROTONI ENERGY SPECTRA SIZE DISTRIBUTION L
WTH TELIOONGITUDE (NS) 72 p lIC
$4.25 CSCL 0B tjnclas

-~ -~ 3/93 53018 j

" - -- "z---." - - .. "

. - ' . . - > '1 "- ' SE ' PT/'. -MB-E-R-197.. .. . _

-~; --- ?7 --

J->-

- -- ODDARDSPACE FLIGH....T -CENTER"
S,,- GREENBELT, MARYLAND -) 7 - ; . . .

:II

_ .. ('. / '

" 7-"

• ~~) - ._" i. "+-.), ",- 1 .- /<". -. " /"



flect the views of.the Goddard Space
Flight Center, or NASA."

For information concerning availability
of this document contact:

Technical Information Division, Code 250
Goddard Space Flight Center
Greenbelt, Maryland 2077-1

(Telephone 301-9824488)

/-N

-N,

N - '-

- N

GNen't, Nyan 27-

(Telehone 01-98:4488



THE VARIATION OF SOLAR PROTON ENERGY SPECTRA

AND SIZE DISTRIBUTION WITH HELIOLONGITUDE

M. A. I. Van Hollebeke*

L. S. Ma Sung*

F. B.. McDonald

NASA/Goddard Space Flight Center

Greenbelt, Maryland 20771 U.S. A.

*Also: Department of Physics and Astronomy

University of Maryland

College Park, Maryland



ABSTRACT

A statistical study of the initial phases of 185 solar particle

events has been carried out using the data from the Goddard cosmic ray

experiments on IMPS IV and V. Special emphasis is placed on the identi-

fication of the associated solar flare. The parent flare can be deter-

mined for 68% of the events. It appears probable that most of the

unidentified increases occur on the non-visible disc of the sun. The

existence of a "preferred-connection" longitude between 20'W and 80
0W

is established by examining the heliolongitude of all the flare associated

events. It is demonstrated that the energy spectra determined at the

time of maximum particle intensity in the 20-80 or 4-20 MeV interval

give results identical to that obtained by the "distance-travelled"

method of Bryant et al. (1965) and is more generally applicable. A

power law in differential kinetic energy appears to give the best repre-

sentation. It is argued that for heliolongitudes\® = 20-800 W, 7 p, the

spectral index determined at the time of maximum particle intensity is repre-

sentative of the source spectra. For these heliolongitudes yp displays a

surprisingly small range with magnitudes varying mainly between 2.0 and

3.1. At lower energies 7 is smaller. Previous electron measurements

provide almost identical average values of the source spectra over similar

energy ranges. These results are discussed briefly in terms of Fermi

acceleration models.

For flare events located further away from the nominal field line

connecting the earth and the sun, 7p becomes progressively steeper. The

lower energies (4-20 MeV) do not exhibit this behavior. It is argued



that this spectral steepening at the higher energies is the result of

energy-dependent escape during the coronal diffusion process. The

size distribution can be represented by a power law of the form dN/dI =

I- y where N is the number of events per unit intensity and I is the

maximum particle intensity at a given energy (usually taken at 40 MeV)

with a , 1.15 + .1. The same value of a applies to both eastern and

western hemisphere events. The event size, on the average, appears to

decrease approximately two orders of magnitude for each 60R away from

the preferred connection region.



INTRODUCTION

The basic properties of a solar cosmic ray event observed at 1 AU

are determined not only by the size of the event at the Sun, but also

by the magnetic configuration of the active region and the solar corona

and by the state of the interplanetary medium. All of these quantities

display a high degree of variability which results in the great

diversity shown by solar particle events. It is clear from recent

reviews (McCracken and Rao, 1970; Lanzerotti, 1972; Simnett, 1974;

Lin, 1974; McDonald and Fichtel, 1974) that significant progress has

been made in the area of interplanetary propagation and in understanding

the characteristics of the electromagnetic phenomena associated with

particle-accelerating flares. However, there remains considerable

uncertainty on the physical processes occurring near the sun.

One approach to understanding both the variability in the production

process and coronal diffusion is by a statistical study of the initial

phases of a large number of solar particle events. Such a sample is

provided by the Goddard Cosmic Ray Experimentson IMPs IV and V. These

observations span the period of maximum solar activity during cycle 20.

In this paper we describe the procedures for identifying the parent

flare of an event and summarize the properties of the 125 events in

which the location of the initiating flare could be established. The

most important characteristics were found to be: (1) the differential

energy spectra measured at the time of maximum particle intensity and

(2) the maximum particle intensity at a given energy. By studying the

variation of these parameters with the heliolongitude of the
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flare, this statistical study establishes the existence of a "preferred

connection region" which is centered about the interplanetary magnetic

field line connecting the observer to the location of the flare site.

For an observer at the Earth, this region extends from 200 W to 800 W.

From the study of solar particle events associated with flares in this

particular range of longitude, the properties of the particle distribu-

tion at the source region can be deduced. Of special interest are the

energy spectra at the source and the size distribution of these events.

The energy spectrum at the time of maximum particle intensity is

examined in section IV. Over the energy region 20-80 MeV the best

representation appears to be a power law in kinetic energy. Character-

istic examples of this spectral index, yp, are shown along with represen-

tations in the form of exponential rigidity. The difference between these

two forms of spectra are significant only when the energy range is

extended below 25 MeV or when the precision of the measurement is

especially good.

The spectral index, 7p, determined at the time of maximum particle

intensity in the 20-80 MeV energy range, shows a strong variation with

the longitude of the parent flare. However, for particle events with

flare locations between 20°and 800 W, it is found that 7p exhibits an

unexpectedly small variation from event to event with 88% having 7p

between 2.0 and 3.1. At lower energies (< 20 MeV) there is no systematic

variation of 7p with flare longitude. The existence of a characterictic

energy spectrum should place considerable restraints on the nature of
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the acceleration process. The variation of yp with heliolongi-

tude provides information on coronal diffusion. These implications are

discussed in section VII.

The size spectrum is analyzed in section VIII. It is shown that

the number, N, of proton events, with maximum particle intensity, I,

can be described adequately by dN/dI - I- , where a is typically

1.15 + .10. A plot of the dependence of peak particle intensity at

20-80 MeV upon solar longitude suggests that the peak intensity falls

off by about two orders of magnitude for each 600 of solar longitude

in agreement with the earlier results of McCracken et al.,(196 . The

interpretation of this intensity variation with longitude is consistent

with the corresponding variations of 7p.

II. DATA ANALYSIS

The data used in this study were obtained from the GSFC Cosmic Ray

Experiments aboard the high eccentric earth orbiting satellites IMPS

IV and V. These cover a period of five years between May 1967 and Dec. 1972

with short interruptions from May to June 1969 and between November

1971 and February 1972.

The experiment consists of two dE/dX vs. E telescopes; a low energy

detector (LED) which detects protons and alpha particles between 4 and

20 MeV/nucleon; and a medium energy detector (MED) which detects parti-

cles between 20-80 MeV/nucleon (Bryant et al., 1962; Kinsey, J. H., 1970;

and Van Hollebeke et al., 1974). Both of these ranges of particle

energies are pulse height analyzed and are free of any background or

electron contamination. The thin dE/dX element, MED A, was used to
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detect electrons in the .5-1.1 MeV energy range. This element has a

2
geometric factor of 60 cm -ster.

The axis of the MED is parallel to the spacecraft spin axis which

is stabilized normal to the ecliptic plane. The LED view direction is

normal to the spacecraft spin axis with a field of view of < 200. Sinci

the satellite spin rate is approximately 23 rpm, the rate accumulation

time of 4.48 seconds is long enough to represent the average intensity

in the field of view over all azimuthal directions.

Over :the entire observing period some 185 solar cosmic ray events

were detected and time histories of those have been described in a

catalogue of solar cosmic ray events IMPs IV and V (May 1967-Dec. 1972)

(M. A. I. Van Hollebeke, J. R. Wang and F. B. McDonald, 1974. For these

events it was required that the proton flux at energies greater than

20 MeV exceed 10-4 particles/cm -sec-ster-MeV. By demanding a measurable

flux above 20 MeV, a better separation from co-rotating events is

achieved.

III. FLARE IDENTIFICATION

A. Problems of Identification: The onset time of the 0.5-1.1 MeV

electrons were used to identify the associated flare. These electrons

travel with a velocity v which is essentially equal to the velocity of

light and provide the earliest indication that an event has started. The

closest possible flare to this electron onset time (or 20-80 MeV proton

onset time when the electron increase was below threshold) that also

displayed x-ray and radio emission was chosen as the parent flare. The

x-ray data was obtained from the University of Iowa experiments on
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Explorer 33 and 35 and from the NRL data on Solrad 9. The radio emissions

considered are type II, III and IV or intensive microwave radio bursts.

All radio and optical flares data were taken from the N.O.A.A. Solar-

Geophysical Data Reports or the I.A.U. Quarterly Bulletin on Solar

Activity. As indicated previously it was also required that the > 20 MeV

proton flux must exceed 10-4 particles/cm -sec-ster-MeV.

Over the 52 months of observing, a total of 185 solar particle

events were detected. It was possible to identify the parent flare for

125 of these events. This:set of 125 events formtsthe statistical sample

on which the present study is based. The corresponding solar and particle

data are summarized in Table I. Included are the electron and flare onset

times, the flare location and the associated x-ray and radio data.

For several large particle events, there was no association with

an optical flare, but the presence of either an intense X-ray, a radio

burst or both suggested a possible association with a flare site located

behind the visible limb. This is not unexpected since an intense X-ray

or radio burst can sometimesbe seen 40' behind the limb. Many

of these associations have been discussed in the literature and references

to those have been made in the table. Of course, the heliocentric longi-

tude of the parent flare could be estimated only if the suspected active

region happened to give large flares in the previous or in the next solar

rotation. The identification was further strengthened when the proton

event was also recorded by another satellite at 1 AU located at large

distances from the earth; for example, Pioneer 6, 7, 8, or 9. In total,
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8 backside particle events have been identified. For these events, the

Ha onset could not be observed so the time of either the X-ray bursts

or the type II or IV radio bursts was used. As will be discussed later,

most of the remaining 33% of the events that could not be identified

with a parent flare represent the contribution expected from flares on

the non-visible disc of the sun.

Approximately 75% of those identified events are accompanied by a

type II or a type IV radio burst; this is indicated by a cross in the

corresponding column in Table I. Some 13% were associated with both a

microwave burst and a type III in metric and decametric wavelength and

are generally micro-events as discussed elsewhere (F. B. McDonald

and M. A. Van Hollebeke, 1973). Some 8% have only a strong centimeter

radio burst at the time of the Ha and X-ray maximum. In the last two

cases it is expected that a type II or IV radio burst might have been

detected with more sensitive instrumentation. Also indicated in the

table are those events during which either optical, radio, or X-ray

observations were not being made.

The assignment of an initiating flare is partially subjective. In

a future paper dealing with the properties of the associated solar events,

we will undertake a more quantitative error analysis. At this time we

believe that no more than 10% of the events in Table I could be mis-

identified.

B. The heliocentric distribution of the flare-associated events:

Figure I gives the distribution of those -125 identified solar events

with respect to the heliolongitude of the associated flare. The proba-

bility has been normalized to 100 at the maximum of the distribution
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and the heliolongitude is taken with respect to the central meridian.

Each interval is 30' wide and it can be seen that the probability of

observing an event is much larger for flares located between 30° and

600 W longitude and that the probability decreases rapidly outside this

range. The sharp drop at 90° W is due to the fact that even moderate

sized solar X-ray or radio bursts are generally not detected behind the

limb. In other words, particle events originating behind the west limb

are detected but the parent flare could not be identified. The data in

Figure 1 also suggests that the probability distribution for the visible

disc of the sun is symmetrical about 45 + 150W. It is expected this

symmetry will be maintained so that the probability distribution between

90°W and 180°W will be the same as between 0 and 900 E. Thus, approxi-

mately 38 events will originate between 90'W and 180'W with 8 of these

being identified in Table I. Thus, 30 or half of the unidentified

events must originate between 90'W and 180°W. Of the remaining ~30

events, probably half could originate between 900 E and 1800 leaving fewer

than 10% of the events unaccounted for.

A similar study has been made by McCracken et al., 0970 for events

occurring between 1965 and December 1967 using data from Pioneer 6 and 7.

They report a pronounced bias toward events originating in the western

hemisphere. With this larger data sample it is possible to show that

the "preferred connection region" corresponds to those times when the

interplanetary magnetic field line connects the flare site and the

observer and appears to be symmetric about the average position of this

field line.
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IV. DETERMINATION OF THE PROTON ENERGY SPECTRUM AT THE SUN

An accurate determination of the solar cosmic ray energy spectra

at the flare site will provide information on the nature of the accelera-

tion process. However the measurements are made at 1 AU after the source

spectrum has been distorted by the effects of coronal diffusion, inter-

planetary diffusion and velocity dispersion. During the early phases of

the event, these effects are dominant. During the decay phase, the

effects due to interplanetary diffusion and adiabatic energy losses

become increasingly important. As will be shown in section VI at times

longer than 24 hours after the release time, these effects appear to be

quite substantial.

One approach to this problem has been to plot the different energy

components on the basis of distance travelled after the flare maximum. For

some events (Bryant et al., 1965) this gives rise to a common curve and the

normalization factors can be used to determine the source spectra. However,

as Bryant et al. and others (Barcus, 1969; Lin, 1970; Dilworth et al., 1972;

Reinhard and Wibberenz, 1974) have shown, this method is not applicable in

all cases. In this paper we show that in the limited energy range of 20-80

MeV, the spectrum determined at the time of the maximum particle intensity

in the 200 -800w longitude range appears to be representative of the particle

source spectra. Furthermore, it is shown that this simple technique gives

results identical to those obtained by a more rigorous method. The

determination of the time of maximum particle intensity is based on

an examination of the 20-80 MeV time history for the medium

energy data. This corresponds to a time when
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the lower energy protons have reached their peak flux while the higher

energy particle intensity has not decreased appreciably. This was found

to be the case even for the fastest decay times. Depending on the time

profile at peak intensity the time interval considered can vary from

45 minutes (in the case of the January 14, 1971 event) to about 6 hours.

For two thirds of the events, this time interval was either one or two

hours. The time of the maximum particle intensity was ambiguous in some

cases when there was more than one maximum in a given event. Whenever

the spectrum appeared different at the various possible maxima, it was

eliminated from the statistics, otherwise the common spectrum was retained,

as in the case of the complex backside event on March 30, 1969.

Listed in column 7 of table I are the times of the maximum particle

intensity during which the 20-80 MeV proton energy spectrum was measured.

Not all of the 125 particle events could be used to study the energy

spectrum at the time of maximum intensity. In addition to technical

problems such as passage through the radiation belts, or saturation of

the MED during several very intense events, there were interplanetary

shocks or large magnetic storms which often disturbed the time history

of the events, especially at low energies. Furthermore, for some micro-

events the intensity above 30 MeV had a non-negligible galactic component.

In all these cases, it was not possible to measure 7p. There were a few

cases, where the maximum of the event was difficult to identify and,

since there could have been variations of the spectrum from one suspected

time of maximum to another, these events have been eliminated from the
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statistics. Whenever the spectral index could not be measured, the

reason was indicated in columns 7 and 8 of table I. In total, -90

of the 125 particle events were used in studying the event source spectrum..

Similar procedures were followed for the low energy detector which covered

the 4-20 MeV range.

As noted in section II, the look-direction of the Medium Energy

Detector is normal to the ecliptic plane while the Low Energy Detector

scans in the ecliptic plane. During the onset phase when particle aniso-

tropies are high, this can introduce serious distortion. However, the

field aligned anisotropies decrease with a time constant proportional

to 1/vt (Fisk& Axford,969) where v is the particle velocity and t is

the time spent by the particle in the interplanetary medium. Rao et al.,

(1971) concludes that in most of the solar proton events, field-aligned

anisotropies are observed up to the time of maximum intensity, beyond

which the intensity exhibits an equilibrium type of radial anisotropy.

Note that an anisotropy in the ecliptic plane which can be represented

as J(0) = JO + J1 cos (0-0A) will not introduce any distortion since the

detector in the ecliptic plane averages over all values of 0 and hence

measures JO which is the same as that measured by the detector with its

look-direction normal to the ecliptic plane. Thus, by making the measure-

ments at the time of maximum particle intensity we minimize the effects

of both field aligned and equilibrium anisotropies. As will be shown

later there are significant differences between the 4-20 and 20-80 MeV

proton data. It is our contention that this is due to possible energy

dependent acceleration and diffusion processes and not to the different

look directions of the two telescopes.
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Figures 2 and 3 show 8 representative examples of the 20-80 MeV

proton time histories. In each case the time interval is indicated for

which the spectral index, r , at maximum particle intensity was deter-

mined. The 3 events in figure 2 have a classical time history with a

relatively short rise time and a well defined maximum. The events in

figure 3 include both micro-events and events with more complex time

histories. Time-histories of .5-1.1 MeV electrons and lower energy

protons are also shown. The latter are of importance in this study

only to distinguish any non-velocity-dependent effects. Note also the

time delay between the maximum intensity of the 20-80 MeV proton and

that of the 6-19 MeV proton. This difference varies from event to

event. For some events the time of maximum intensity for the 6-19 MeV

protons was close to that of the 20-80 MeV protons. In this case the

spectral determination could be made during the same time interval

from 6 MeV to 80 MeV; two such examples are given in figure 4. In the

case of April 22, 1971, a differential energy power law fits the data

from 4 to 80 MeV. For the event on April 20, 1971, there is a knee in

the spectrum between 15 and 25 MeV. It is not clear from the data above

whether the knee has a real physical meaning from which the energy

change process can be deduced (S. S. Muray et al., 1972) or if it is

simply an effect of anisotropies which are directed out of the ecliptic

plane.

The distance-travelled-method is based on the fact that for some

events, the interplanetary diffusion coefficient K is independent of
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rigidity and is a function of velocity only, i.e. K - v. Our ability

to define a unique spectrum at the time of maximum particle intensity

for the 20-80 MeV protons derives partially from the relatively narrow

energy interval and also from the weak energy dependence of the diffusion

coefficient. To confirm that this is indeed the case, we have chosen

four events when the time interval selected for the spectral determination

of 7p was one hour or less. These are events with the fast decay times

where the effects of velocity dispersion should be the greatest. For

each of the four examples, the time histories of the three different

energy ranges have been used to determine independently the maximum

intensity in each of these energy ranges. The energy spectra derived

from these three peak intensities are plotted as the dashed diamonds

along with the spectral data obtained by the first method (Figure 5).

It is seen that in all four cases the two methods give essentially identical

results over the 20-80 MeV region. Because the first method is better for

small events and for those events with some structure at the peak time,

we have consistently used it for all cases.

To insure that anisotropy effects are not important at the time of

maximum particle intensity, a detailed comparison was carried out with

an essentially identical detector on OGO V. This detector is always

looking in the ecliptic plane, pointing in a direction away from the

earth and measuring proton intensity in roughly the same energy range.

These detector experiments are described in detail by Jones et al.,

(1967). It was found that near maximum particle intensity the differences
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in intensity of the 20-80 MeV protons from both telescopes were small

and that the differences in spectral shapes were negligible. Figure 6

shows, for comparison, the spectra of two events at the time of maximum

particle intensity. For the event on November 24, 1969, the difference

in intensity was roughly 22%, but the spectra had the same slope. For

the event on April 22, 1971, the intensity differed by less than 10%

and the measured slopes were identical. The first case suggests that

although a small variable anisotropy might still be present at this

time, it clearly did not affect the energy distribution of the particles.

Note also that in April, 1971, the OGO detector was looking in the direc-

tion of the nominal field line while in November, 1969, it was pointing

in the direction ~60O E from the sun-earth line. Late in an event,

when the expected anisotropy is small, the particle intensity detected

by OGO V agrees perfectly with those from IMP IV or IMP V.

It has been previously shown that depending on the event or the

energy range, the number spectrum can be represented either as a power

law in kinetic energy or in the form of exponential rigidity. For

example, Freier and Webber (1963) found for 16 large events, the best

spectral shape was of the form J = Jo(t) e-P/Po(t), where P is the

particle rigidity, and Po(t) and Jo(t) are functions of time. Generally

these spectral determinations were made after the maximum of particle

intensity at a time when the decay phase may have been well advanced.

In addition, they were concerned with larger events and higher energies

than those of this study.
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In this experiment, the range of energy generally considered

(20-80 MeV) is too small to show a significant difference between a

differential energy spectrum and an exponential in rigidity,

especially for small events where the uncertainty can be as high as

+ 25% for the higher energy bin. However, whenever a unique spectrum

could be determined over an energy range from 10 MeV to 80 MeV, the

differential energy spectrum gave a better fit in this energy range

than any other representation such as exponential rigidity. This is

shown in figure 7 for 3 events with different spectral slopes. The

fit in exponential rigidity of the March 26, 1970 data was bad at low

energies whereas a differential energy power law spectrum was an

excellent fit from 10 to 80 MeV as shown in the first spectrum of

figure 8. In addition, some 19 other typical spectra of the -90

events listed in table I are shown in figure 8. The time history of

several of them were included in figures 2 and 3. There are micro-

events such as July 30, 1967 and January 14, 1971 for which the higher

energy bin is almost equal to the galactic intensity in this energy

bin. There are small and medium size events with different spectral

indices as well as large size events such as September 1, 1971. For

all of these, a differential energy power law spectrum of the form

dJ/dE - E 7, gives a good fit in the 20-80 MeV range.
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Column 8 in Table I lists the values of the spectral index y p, for

the 20-80 MeV protons. The data for the 4-20 MeV protons have not been

included in this table. Frequently there were difficulties in obtaining

7p in this energy interval. It may be that in going from the 20-80 MeV

to the 4-20 MeV range, the interplanetary diffusion coefficient K enters

a different regime where the energy dependence of K becomes more pronounced.

For example, the interplanetary irregularities affect the low energy parti-

cles more than the medium energy ones. Some of these irregularities are not

only due to shocks but can also be local disturbances in the interplanetary

medium. Thus, each time a storm was detected at the earth or any distur-

bance appears simultaneously in the -1 MeV and the 4-20 MeV proton inten-

sities, the corresponding 4-20 MeV event was eliminated from the statistics.

Figure 9 gives the distribution of the spectral index yp for the

two different energy ranges. The curve fits a Poisson like distribution

with an average of 2.9 for the 20-80 MeV protons and a harder 2.5

average spectrum for the 4-20 MeV protons. These distributions confirm

that, on the average, the spectrum is flatter at lower energies

(McKibben, 1972). This data in figure 9 clearly shows that 7p in

general cannot be represented by a single power law over the energy

interval 4-80 MeV even when velocity dispersion is taken into account.

Note that those distributions represent an average of all flare associated

events independent of the position of the parented flare.
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V. VARIATION OF THE SPECTRAL INDEX 7
WITH THE ASSOCIATED FLARE HELIOCENTRIC LONGITUDE

The variation of the spectral index, yp, with heliolongitude

for 20-80 MeV protons is shown in Figure 10. The yp values identified

by open circles refer to the 8 "long-rise-time" events in which the

maximum in the particle intensity occured more than 24 hours after the

onset of the associated flare (c.f. column 8, table I). It is felt that

the 7p measured for these events will have been significantly distorted

by interplanetary adiabatic deceleration and coronal diffusion. All

other events show a definite increase in 7p with increasing longitude

away from the preferred connection region. This pattern is shown by

the dashed contour lines which enclose more than 92% of the data points.

For many of those cases lying outside the dashed contour line it is

often possible to identify features such as interplanetary shocks close

to the observer or multiple structure over the period of peak intensity

that contributed to the anomalous value of the rise time. The solid

line is the resulting least square fit obtained for those events within

the contour lines. This distribution has a well defined minimum for

events associated with flares between X. = 2*0 and 800 W. Furthermore,

in this region the dispersion in 7p is surprisingly small with 88% of

the 32 events having yp between 2.0 and 3.2 (Fig. 11).

Moving away from the 500 + 300 W region, 7p can be represented

approximately by:

7p ('o) = 2.7 [1 + AX/2 ]

Where AX is the separation angle in radians between the flare longitude

and 500 W. As previously emphasized, coronal and interplanetary conditions

are continuously changing so the dispersion displayed in Fig. 10 is not

unexpected. There were no systematic variations of 7p with heliocentric

longitude for the 4-20 MeV data (Fig. 12).
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VI. SOURCE SPECTRA AND THE ACCELERATION PROCESS

For the preferred connection region, X0 = 20-800 W, coronal diffusion

effects should be at a minimum and the variations observed in 7p from

event to event are principally variations in the source spectrum itself.

However, it is first necessary to establish that interplanetary diffusion

and the resulting adiabatic energy losses are small during the initial

phase of an event.

Many studies have shown for both electrons and protons over a wide

span of energies that the onset time and the rise time are minimum

for an observer close to the interplanetary field line which connects

to the flare region. (Barouch et al., 1971; Simnett, 1971; Datlowe, 1971;

McKibben, 1972; and Reinhard and Weibberenz, 1974). For example, in the

present data this can be observed in the plot of the difference between

the 20-80 MeV proton onset time and the time of maximum intensity as a

function of heliolongitude (Fig. 13). All of these results clearly

establish that during the early phases of an event, the propagation

process is most efficient for an observer near the earth when the solar

flare is located between - ' = 200 and 800W.

It is expected that solar cosmic rays will lose energy in the

interplanetary medium as they are scattered in the magnetic irregularities

moving with the solar wind (Parker, 1965; Gleeson and Axford, 1967).

The amount of this energy loss or adiabatic deceleration will be a

function of the particle diffusion coefficient. Axford (1970)

has suggested that the importance of convection and energy loss

processes relative to diffusion can be obtained from the expression

for particle streaming
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S (r, t) = C V U - K(r) F- (r,t)

where V is the solar wind velocity, U (r,t) is the particle density at

a given energy E, C = 2/3 (1 + y) is the Compton-Getting factor for

non-relativistic particles and K is assumed to be of the form

K (r) = Ko r

The significance of the convective and diffusive effects can be estimated
by examining the ratio, D, of the two terms

D = CVU V U - (2-b)CVt
K(r) T/ r

Assuming b = 1/2 gives
D = .035 t for V = 400 km/sec where t is in hours.

At "29 hours convective and diffusion effects will be equal. The

median rise time Tr (between particle acceleration and maximum particle

intensity at 1 AU) for the 32 events between 20 and 800 W is 4.5 hours

(Figure 14) and convection effects would be expected to be on the order

of 10%. This is borne out by the more detailed computation of Palmer (1973)

showing that for b = 1/2 the energy loss (for Tr = 5.2 hours) will be

12% which is in excellent agreement with the estimate. For Tr = 10 hours,

the calculated energy loss will have increased to 25% of the original

energy. However, only 12% of the events have Tr > 6 hours (Figure 14).

The largest variation of K as a function of energy that has been assumed

is for K cc R / 2 which would imply that K could vary by a factor of 3

from 20 to 80 MeV. (Our spectral results indicate, however, a much weaker

rigidity dependence). From the calculations of Palmer (1973) it can be

estimated that for Tr = 5 hours, the energy loss will increase from
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12% to 20% if K is decreased by a factor of 3. For a rise time of 10

hours, these will change from 25% to 35% for similar changes in K.

These estimates for two different rise times both suggest that the most

extreme variations in K as a function of energy would result in a 10%

shift between 20 and 80 MeV. Most estimates of the variation of K with

energy are smaller than the extreme case we have chosen and resulting

spectral distortions are smaller.

Figure 15 shows the distribution of the rise time Tr as a function

of the spectral slope 7p for events associated with longitude 200 W to

800 W. There is a tendency for a long time delay to be associated with

a smaller value of 7p, in agreement with the predicted effects of

adiabatic deceleration in the interplanetary medium.

From the previous discussion it is clear that for flares with

between 200 and 800 W, 7p should be representative of the injection

spectrum with dJ/dE = C E- 2 . 7 over the 20-80 MeV range. It is customary

to express the source spectra in terms of N(E) c E-6 0 where N(E) is the

number of particles with kinetic energy E per unit volume

N(E) oc 1 dJ dJ C E-3.2
V dE E2  dE

for 20-80 MeV proton energies. For lower energies yp = 2.4 and 8o = 2.9

where 8o = Yp + 0.5 for non-relativistic particles. As emphasized

previously, yp displays a relatively small variation with 88% of the

events having values between 2.0 and 3.2 while the peak intensity varies

over some 4 orders of magnitude. There is some suggestion in the data
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of an inverse correlation between the peak intensity and 7 p The

largest event during which the MED did not saturate (February 25, 1969)

also had the smallest value of 7p = 1.3 + .2.

There is a remarkable similarity between the median value of 7p

reported here for protons and the values previously reported for

electrons of approximately the same energy. Using the Goddard cosmic

ray data from IMP IV, Simnett (1972) found a spectral index Ye = 3.0 + 0.2

for 3-12 MeV electrons. Note that over this energy range the electron

velocity is close to c so 8e = 7e. For the 12-45 MeV region Datlowe (1971)

reported a median value of Ye = 3.5. This suggests that the average

source spectrum is similar for protons and electrons of the same energy.

A number of models for solar particle acceleration have been pro-

posed. Wentzel (1965) has shown that by varying the conditions for

particle escape from the acceleration region, the basic Fermi process

can be used to produce spectral shapes ranging from exponential energy,

exponential rigidity to power laws either in rigidity or energy. A

more detailed model in which the particles are accelerated in a perpen-

dicular MHD shock with a stochastic scattering of the particles in the

magnetic field irregularities has been shown by Schatzmann (1963) to

predict power law spectra in reasonable agreement with that reported

here. Friedman and Hamberger (1969) calculated that acceleration at a

neutral sheet could produce the proper spectral forms. There are two

examples of a large number of processes that have been proposed (c.f.

Syrovatskii, 1969). It is not evident that these can be modified to
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produce similar spectral shapes for both electrons and protons. A number of

other observational parameters are needed to help define a proper model.

These parameters include the relative numbers of electrons, protons and alpha

particles accelerated to a given energy as well as better definitions

of coronal conditions. The additional particle measurements will be

presented in a later paper.

There is an obvious difference between the 20-80 MeV proton spectrum

and the 4-20 MeV spectrum. This indicates either a break in the source-

spectrum, different propagation conditions, or both. It is expected

that the low energy spectrum should be more distorted by propagation

effects in the interplanetary medium. It has also been shown (Feit,

1973; McKibben, 1973) that there is often storage and continuous ejection

for low-energy particles. The energy degradation of the spectrum has

been shown by Krimigis and Verzariu (1971), who estimated from observa-

tion of the solar flare proton spectrum around 1 MeV, that a storage

of -10 hours could take place for some events in a region of the corona

with density - 105 cm-3 . Even with these uncertainties on the propaga-

tion conditions at low energy, it appears most probable that part of the

spectral change is produced at the source. A two-step acceleration

process with a knee around 10 MeV, as suggested by Sturrock (1973),

does not seem incompatible with the previous results.
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VII. THE SOFTENING OF 7p WITH INCREASING DISTANCE AWAY FROM THE

PREFERENTIAL LONGITUDE: INTERPRETATION

It was found in section V, that the 20-80 MeV proton spectrum, as

well as a number of other observable properties of the solar particle

events, varied with the longitude of the parent solar flare. The proton

spectrum associated with flares at a longitude AX radian away from the

observer's "preferential longitude", ., can be expressed approximately

as

a-_po (1 + - )
dJ E
dE

where 7po, the characteristic source spectra observed for 20-80 MeV protons

(see section VI), equals -2.7, X corresponds approximately to the helio-

longitude of the Archimedes spiral field line at the earth with o e 500

+ 300 W depending on the velocity of the solar wind. We interpret this

variation of the proton energy spectrum with longitude as a coronal pro-

pagation effect.

Essentially two models have been proposed for the initial propagation

of solar particles:

1) the azimuthal propagation takes place in the interplanetary

medium (Burlaga, 1967, and Lupton and Stone, 1973).

2) the azimuthal propagation takes place in the solar corona as

suggested by Reid (1964), Axford (1965) and Fan et al. (1968).
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A number of papers had discussed these two models in the light of

recent observations (McKibben, 1973, Reinhard and Wibberentz, 1974).

The experimental evidence suggested that the azimuthal particle distri-

bution must occur near the sun. For example the anisotropy at early

times is generally aligned with the interplanetary magnetic field and

is not dependent on the position of the initiating flare. The initial

magnitude of the particle anisotropy is also not dependent on this

position (McCracken et al., 1968; Fan et al., 1968; Rao et al., 1971).

Based on these observations we adopt the basic ideas of coronal

diffusion as originally proposed by Reid (1964). The particles released

by the flare propagate through the solar atmosphere experiencing energy

degradation by ionization loss and gradually leaking out into inter-

planetary space. The particles detected by an observer near the earth

are those which made their escape in the solar longitude region which

has good field connection with the observer. It is known that energy

loss by ionization would affect the low energy particles much more

strongly and would result in a flattening of the spectrum. For example,

in Englade's (1971) treatment the effect on the 20 MeV proton was about

eight times larger than that on the 80 MeV proton. Such a flattening of the

spectrum between 20-80 MeV is in strong disagreement with the observa-

tion. The effect of ionization loss must be negligible and can be

disregarded in this energy range during the initial phase.

Observations on the nature of particle-transport in the corona have

found a rather weak energy dependence. Lanzerotti (1973) studied the
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time difference between the observed particle onset time and the rectilinear

sun-earth travel time as a function of solar longitude using protons in

different ranges of energy between .6 MeV and -25 MeV. These results

were interpreted in terms of a diffusive motion in the corona. Lanzerotti

concluded that the ratio of the diffusion coefficient to the altitude at

which the coronal transport occurs, Kc/Rc2 , was independent of energy.

In a more extensive study of the variation of the particle rise time

with associated flare longitude for > 10, > 30, and > 60 MeV protons,

Reinhard and Wibberenz (1973, 1974) succeeded in separating the effects

of coronal propagation and interplanetary propagation and found that the

coronal propagation is energy independent. It appears that the transport

process in the corona is a combination of coronal drift and coronal

diffusion (Reinhard and Roelof, 1973; Reinhard and Wibberenz, 1974).

These studies all indicate that the coronal transport (drift and/or

diffusion) should not affect the energy spectrum in the energy range

considered here during the rise to maximum intensity. To account for

the observed spectral steepening with increasing azimuthal distance from

the flare it is necessary to assume that the escape rate from the corona

is energy dependent. Note that this loss term should not have a strong

influence on the observed onset and maximum times, but rather will

affect the intensity (Reid, 1964).

Neglecting the ionization loss, and assuming that coronal diffusion

is independent of energy, in agreement with the observations, it is

possible to find the energy dependence of the escape rate from the

variation of 7p with x.
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For simplicity we shall consider a two dimensional coronal

diffusion model. The number density at time t after acceleration and

distance A along the diffusive layer from the flare site can be

expressed as

= U E 68

U (t,E,t) exp (- --r (E) t) (1)

In this expression, similar to the solution given by Reid (1964) and

Englade (1971), U0 E
"8o is the number density spectrum at injection,

a, the coronal diffusion coefficient and -r(E), the escape rate. Only

the escape rate is assumed to be a function of energy.

The rate at which particles escape from the corona at time t and

distance A is 7(E)U(L,E,t). Since these particles must propagate in

the interplanetary space, the number density detected at 1 AU will be

the convolution it n(E) U(L,E,t-u) f(u) du where f(u) describes the

effect of the interplanetary propagation. In the coronal transport

model it is argued that for events located away from the preferred

connection region a large portion of the particle propagation is due

to coronal diffusion and/or drift whereas the effect of interplanetary

propagation plays a considerably minor role. This implies that f(u)

has a relatively narrow profile and in the vicinity of i o where f(u)

is appreciable the escaped particle distribution I(E) U(£,E,t-u) is

a very slowly varying function of u. Thus the number density observed

at 1 AU becomes simply N(£,E,t) = n(E)U(£,E,t) F(t) where F(t) =

Jt f(u) du accounts for the interplanetary effect. Using equation (1)
0

N(L,E,t) becomes:
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N (L,E,t) = U° F(t) r(E) E 8 0 exp (- (E)t) (2)
4ot 4at

Since the density spectral index 6 is defined as
P

E dN
N dE P

equation (2) becomes

6 E dn + E t = (3)
n dE dE P

A relation between the spectral index 7p and the rise time Tr

between particle acceleration and the maximum particle intensity at

1 AU, is indicated in Figure 16 for 20-80 MeV protons. Two contour

lines were drawn to enclose all the data points. It is evident that a

linear relation between yp and Tr exists of the form

p = a Tr + bl

or 6p = a Tr + b (4)

with b = b1 + .5, where the value of .5 enters since the intensity is

proportional to the particle velocity times number density. Substituting

(4) into (3) gives

8 E dM + E  = a T +b (5)
o , dE dE r r

Since neither T(E) nor dI(E) depends on time, equation (5) can be used
dE

to solve for both r(E) and dE by substituting two different times

(Trl, Tr2) into (5). The difference at the two different times then

gives

dE r2dE (Trl-Tr2) = a (Trl-Tr2)

dn a
or -- = (6)dE
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Substituting (6) into (5) gives

a
o-(E)= 6-b (7)

In the limited energy range between 20-80 MeV, the values of a and b

were approximated by constants. Over a more extended range, it is

expected they would be a function of energy. The observed variation

of 7p between the 4-20 and 20-80 MeV interval suggests that the spectral

index is energy dependent.

Since from Figure 16 a pe (4.5 + 2.5)10 -5 , b p 2.9 and the density

spectral index 80 at injection was found to be -3.2, at a mean energy

of E w 40 MeV,

- a (4.5 + 2.5)10- 5  (5 -4 1sec
p(E)= - = = (15 + .8)10 sec

86-b 3.2 - 2.9

and ,(80 MeV) - Tr(20 MeV) = a £n ( )

-5 -1
= (6.2 + 3.5)10 sec

In other words the steepening of the spectral index yp can be interpreted

by an increase in the loss rate of - 35-45% from 20 MeV to 80 MeV. Our

estimate of n(E) can be compared with an order of magnitude estimate of

the escape rate given by Reid (1964). Using the data of the September

-4 -1
28, 1961 event, he found an upper limit q - 3.5 10 sec for protons

between 130 and 600 MeV.

It is important to emphasize that the calculations above refer to

the average changes in I(E). It is expected that there will be large

local variations depending on the local coronal magnetic configuration

(c.f. Altschuler and Newkirk, 1969). These local variations probably

account for the anomalous longitude variations observed by a network

of satellites during the April 10, 1969 event (McCracken et al., 1971).
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If instead of coronal transport, we had assumed an interplanetary

propagation model, the particles associated with flares at longitudes

away from the "preferred longitude" would be the result of a diffusion

across the field lines. Since KI, the diffusion coefficient perpendicular

to the magnetic field increases with increasing particle velocity, the

high energy particles would have better access across the field and

therefore a flatter spectrum would result as the azimuthal distance

from the flare is increased. This is in disagreement with the present

observations. Note that, at late time (> 3 days) McCracken et al., (1971)

found a steep spectrum for the particles associated with flares close

to the preferred connection region while the spectrum became increasingly

flat for particles at larger distances from this region. One explanation

may be that the diffusion across the field line is sufficiently small

that it can be neglected at early time, but at late times it becomes

more important since particles will have a chance to propagate across

the field to arrive at the earth. In other words KI is not 0 but is small

compared to Kll This would have the effect of depleting the high energy

particle population in the flare associated longitude region and thus

steepen a spectrum which was flat at early time. On the other hand,

the preferential arrival of the high energy particles in a region away

from the flare associated longitude would flatten a spectrum which was

steep at early time.

In summary, it was shown in this section that a steepening of the

spectrum away from the flare longitude connected region can be explained

by an energy dependence of the escape rate in the corona. It was
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estimated that the escape rate of the 80 MeV protons may be some 35-45%

larger than for the 20 MeV protons. This dependence effect may also

contribute to a change of intensity with longitude and influence the

longitudinal distribution of the number of detected events as discussed

in the next section.
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VIII. SIZE DISTRIBUTION OF FLARE ASSOCIATED PARTICLE EVENTS

The compilation of IMP IV and V data can be used to study the size

distribution of solar particle events. This information as tabulated

in Table II and Figure 17 displays the number of events per unit of

intensity as a function of intensity for all detected events. To

minimize the effect of the spectral dependence upon longitude, the

peak proton intensity measured at 40 MeV is used to characterize the

size of the event. The galactic background fixes the limit of detectability

of event intensity to ' 10-4 particles/cm2-sec-ster MeV above 20 MeV.

This is some two orders of magnitude below the threshold in the data used

by Reinhard and Roelof (1974) in a more recent report. The size distri-

bution (Figure 17) of all detected particle events can be adequately

described by - I- ' where I is the maximum differential intensity,
dI

dJ 2
d in unitsof particles/cm -sec-ster-MeV and dN, the number of events
dE

in the range of intensity dl. a is found to be 1.15 + .05. The size

distribution of the flare-identified events is also plotted in Figure 17.

Included are all the events listed in Table I. Note that all detected

events above 10-1 particles/cm2-sec-ster-MeV have been identified. Note

also that the form of the distribution is the same as the one for all

detected events and a is constant within the limit of accuracy. This

suggests that the probability of identifying an event is approximately

the same for the very low intensity and for the medium size intensity

events.

Figure 18 shows the longitudinal dependence of the peak intensity

(at 40 MeV) of the solar particle events listed in Table I. In Figure 19,
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the data has been summed over two longitudinal intervals Xe = 200 W -

600 W and X® = 200 E - 600 E. For most of the high intensity events

(; 2 particles/cm2 -sec-ster-MeV), the MED detector was saturated near

the maximum. To compensate for the lack of data for those events, the

maximum intensity at 40 MeV was deduced from > 30 MeV and > 60 MeV

proton intensity of the APL experiments (Bostrom, et al.).

The intensity distribution (Figure 18) does indicate a maximum

of intensity in the 200 - 600 W longitude range and a decrease of one

or two orders of magnitude every 600 from the "preferential longitude

range" as it was suggested by McCracken et al. (1967) and McCracken and

Rao (1970). Furthermore, it is seen in both longitudinal ranges (Figure

19), the form of the distribution is the same as for the total number of

events and is expressed as

dN -adN = A(X) I with a = const. = 1.10 + .05
dl

A(X) is a function of the longitude. For X = 20'W-60°W, A(X) = AX = 2.7,
o

and the X = 600-200 East, A(X) = A = 1.1 + .05. The distribution between

20"E and 20'W is intermediate between the two distributions shown in

Figure 19. As will be discussed in a future paper, it appears likely

that a significant part of the variation of the intensity with longitude

is probably due mainly to the variation of the spectral index with

longitude as shown in the previous section with the number of events

observed at longitude X above intensity I

1-.0 + .05

.10

where A() =  
)  [C() E+ .10 + .05

where A(X) = A(X 0 ) [C(X) E 0 'l
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C(X) 5 1, an attenuation factor which is a function of longitude,

depends on the conditions of propagation in the corona. 7 0 2.7
P0

is the characteristic spectral index. The longitude X is in radian.

It is expected that different results would be obtained at lower

energies where the behavior appears much more complex.
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DISCUSSION

It is important to emphasize that this is a statistical study and

significant deviations are expected from event to event. Furthermore,

all particle increases above a given threshold have been included so

this investigation is biased toward small and moderate sized events.

Nevertheless, it is surprising how well many of the event parameters

are ordered by considering the heliolongitude of the parent flare. The

longitudinal variations of the identified events establishes the

existence of a preferred connection region that extends from approxi-

mately Xg = 200 W to 800 W. The width of this region is due not only

to variations in the solar wind velocity but probably also to the

existence of a fast diffusion region in the corona (Reinhard and

Wibberenz 1974). We have not separated these two effects in this paper.

The relatively small variation in the source spectra for 20-80

MeV protonsfor events in the preferred connection region suggests the

basic acceleration conditions are not greatly altered from event to event.

The fact that solar electrons in the same energy range have spectra

similar to that of the protons is unexpected. This requires more

detailed study. Of special interest will be the corresponding behavior

of the helium nuclei in these events.

The present study further confirms that the processes involving low

energy particles are more complex than those involving particles above

-20 MeV. This is probably due to more frequent solar injections and

longer storage times at the sun for the lower energy particles.
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The variation of 7p with heliolongitude suggests that particle

escape from the corona is energy dependent. A more detailed study of

this effect is now underway.



TABLE I - SOLAR FLARE PARTICLE EVENTS (May 1967 - Dec. 1972)

.5-1.1 MeV SOLAR FLARE ASSOCIATION 20-80 MeV 20-80 MeV

DATE ELECTRON Radio Burst MAX. TIME* SPECTRAL

ONSET TIME (UT) sTime x) X-Rays cm; Type II Flare Location (UT) INDEX 7
ONSET TIME (UT)t onset Max. (dJ NEX )Type and/or

III I IdE

1967

May 24 not available (23)1835 (1845) yes yes X N 31 E 25 Saturated ---

May 28 0600±0003 0527 (0546) yes yes X N 22 W 32 0800-1200 2.7±.1
June 06(1) 0603±0006 --- --- -- Reg. 8818"W150 1730±0030 2.5±.1
July 29 MED:P2100±0030 1939 (1948) yes yes N 23 W 21 0230±0030 2.3±.25
July 30 0515±0003 0508 (0512) yes yes N 25 W 26 0070+0015 3.0±.2
July 30 0635±0005 0615 (0625) yes yes N 28 W 30 0745+0015 3.0±.1
July 30 1634±0003 1612 (1635) yes yes N 26 W 36 --- ---
July 30 1950±0003 1946 (1955) yes yes N 30 W 33 2130±0030 2.8±.2
Aug. 1 >1500<2200 1722 (1736) yes yes X N 27 W 62 2330±0030 2.25±.2
Aug. 2 MED:P0845+0015 0757 (0800) yes no observation N 27 W 60 0930±0030 2.7±.2

Aug. 2 1738±0003 1727 (1732) -o observatior yes N 26 W 76 2130±0030 3.1±.1
Aug. 3 0936±0003 0918 (0927) yes yes no obs. N 27 W 85 1130±0030 3.0±.2
Nov. 2 r0845±0015 0852 (0857) yes yes X S 18 W 02 1600-1900 3.8±.1

1 L 1105±0007
Nov. 4 1212±0005 1151 (1154) yes yes X S 18 W 33 1430+0030 3.2+.1

Nov. 7 0200±0100 0157 (0159) yes --- --- S 15 W 51 0500+0100 2.8+.1

Dec. 3(2) 0915±0005 --- yes ~ 0855 yes X Reg. 9091-W105 1430±0030 2.8±.1

Dec. 12 0100±0200 (11)2347 (2358) yes yes X S 21 W 18 0700-1500 2.3±.1

Dec. 16 0427±0005 0247 (0256) yes yes X N 26 E 66 undeter.

Dec. 29 0057±0003 0047 (0050) yes yes S 26 W 77 0145±0015 2.2±.2

1968

Jan. 11 1730±0030 1659 (1701) yes yes X S 25 W 39 2300+0200 2.7±.1

Jan. 14 MED:P2115+0015 2006 (2015) yes yes X N 17 W 42 0230F0030 small I(b)

Feb. 1 18300003 1809 (1812) yes yes X N 17 W 20 2015±0015 " "

Feb. 1 1930±0010 1915 (1920) yes yes X N 16 W 16 2215±0015 " "

Feb. 2 0550±0003 0541 (0547) yes yes X N 15 W 23 0645±0015 " "

Feb. 17 0315±0003 0251 (0254) yes yes X N 17 W 47 0600-0800 2.4±.1

Mar. 21 1610±0020 1422 (1429) yes yes X N 17 W 54 1800-2200 2.65±.15

Apr. 26 1547±0003 1431 (1437) yes yes uncertain N 09 W 49 1900+0030 2.3±t.

* This maximum time is the time of measurement of the spectral index -p
t NED Proton (20-80 MeV) onset time is used whenever the electron onset time is uncertain.



TABLE I - CONTINUED -2-

.5-1.1 MeV SOLAR FLARE ASSOCIATION 20-80 MeV 20-80 MeV

DATE ELECTRON Ho Time (UT) X-Rays Radio Burst MAX. TIME* SPECTRAL

ONSET TIME (UT) onset Max. cm; Type II Flare Location (UT) INDEX 7
Type and/or (dJ -E-7
III IV dE

1968

June 09 0917±0003 0835 (0856) yes yes X S 14 W 08 1500±0100 3.0±.1
Jul. 06 1510±0010 0946 (0956) yes yes X N 10 E 90 (07)1800-0600 1.8±.1 (a)
Jul. 09 19000030 (08) 1707 (1727) yes yes X N 13 E 59 (10)1200-2600 2.9±.2 (a)
Jul. 12 0030±0030 0000 (0013) yes yes N 12 E 10 0500-0700 4.0±.1
Jul. 12 1410±0010 1341 (1415) yes yes X N 11 W 20 (13)0500-0600 5.0±.2
Aug. 14 1400±0010 1326 (1333) yes yes X N 13 W 80 1830±0030 2.6±.1
Sept.26 0700 0012 0026 (0031) yes yes X N 14 E 35 1700±0100 4.5±.2
Sept.28 1100±0005 0721 (0808) yes yes S 19 E 39 1830±0030 5.0±.1
Sept.29 0955±0020 0922 (0941) yes yes X N 13 W 13 undetermined
Sept.29 17000003 1618 (1623) yes yes X N 17 W 52 2300±0100 2.00±.15
Oct. 04 0040 0003 (03)2348 (2408) yes yes X S 16 W 37 0600±0030 2.7±.2
Oct. 24 MED:PIO0000200 (23)2356 (2407) yes yes X S 12 E 59 (25)0900-1500 Low E. Event
Oct. 26 MED:P043 0O0030 0046 (0119) yes yes S 20 E 32 1330±0030 3.8±.1
Oct. 27 MED:P1430 0030 1318 (1324) yes yes X S 17 E 17 2130±0030 3.15±.2
Oct. 29 1547±0005 1114 (1234) yes yes X S 16 W 12 1930±0030 3.5±.1
Oct. 31 0032 0005 (30)2339 (2413) yes yes X S 14 W 37 storm cond. -
Nov. 01 0930t0030 0820 (0905) yes yes X S 18 W 47 storm cond. -
Nov. 02 >0900<1800 0949 (1012) yes yes X S 14 W 66 perigee

Nov. 04 0538-0003 0520 (0542) yes yes X S 15 W 90 storm cond. -
Nov. 18 uncertain 1017 (1033) yes yes X N 21 W 87 saturated -
Dec. 03 0730±0100 (02)2115 (2119) yes yes X N 21 E 90 (05)0100±0100 2.5±.2 (a)

(06)0100±0200
Dec. 27 1330±0030 1046 (1056) yes yes X N 16 E 02 (28)0200±0100 2.6±.2

1969

Jan. 24 0757±0003 0706 (0728) yes yes N 20 W 09 1000-1200 3.7±.1
Feb. 24 2333±0005 2305 (2315) yes yes X N 12 W 32 (25)0300±0100 2.6±.1

Feb. 25 0922±0007 0900 (0913) yes yes X N 13 W 37 1230±0030 1.3±.2
Feb. 26 0500±0012 0418 (0427) yes yes X N 13 W 46 0830±0030 2.15±.15
Feb. 27 1436±0006 1348 (1413) yes yes X N 13 W 65 2100-2600 2.0±.25

Mar. 12 MED:P1830±0003 1739 (1742) yes yes X N 12 W 80 2100±0100 2.1±.1



TABLE I - CONTINUED
-3-

.5-1.1 MeV SOLAR FLARE ASSOCIATION 20-80 MeV 20-80 MeV

ELECTRON He Time (UT) Radio Burst MAX. TIME* SPECTRAL
DATE ONSET TIME (UT) onset Max. X-Rays cm; Type II Flare Location (UT) INDEX y

Type and/or -E

III IV

1969

Mar. 21 MED:P0538±0003 0139 (0159) yes yes X N 19 E 16 1530±0030 3.3±.15

Mar. 27 144010010 1323 (1341) yes yes X N 21 W 68 2330±0030 2.2+.1

Mar. 30(31 <05000030 <0332 yes-0248 yes X N 19 "W 110 0830±0030 2.2±.2

(31)0600-1200

Apr. 10 2030±0100 <0410 (0414) yes-035 6  yes X N 11 E 90 Saturated

**------------------------------------------------------------------------------------------------ ----------------------------------------------

1969

Sept.10 2200t0200 0518 (0522) yes yes X S 20 E 69 (12)1000-2400 Small I.(b)

Sept.25 0738±0003 0654 (0736) yes yes N 13 W 14 1000-1200 3.5_.2

Sept.27 <0730 0347 (0412) yes yes X N 09 E 02 2030±0030 3.7+.15

Oct. 14 0555±0003 0539 (0544) yes yes X N 25 W 71 1030±0030 2.6+.1

Nov. 02(4) 1035±0003 <0950 (1138) yes-0949 yes N 16 W 90 Perigee

Nov. 07(5) 0430±0030 0322 (0345) yes no obs. N 14 E 11 2400±0200 4.0+_.1

Nov. 24 1000±0005 0914 (0919) yes yes " N 13 W 31 1200-1500 2.3+.l

Dec. 30 2010±0020 <1927 (1934) yes yes X S 14 W 85 (31)0100-0800 2.8+.2

1970

Jan. 03 MED:P21320100 1915 (1917) yes yes N 13 W 16 (04)0900±0200 Small I.(b)

Jan. 28 13300005 1022 (1032) yes yes - S 16 W 26 1900-2100 2.9±_.1

Jan. 29 1255±0005 1024 (1029) yes yes - S 13 W 42 2400±0100 2.3±_.1

Jan. 31 1605±0005 1512 (1535) yes yes X S 23 W 62 20000100 2.7-.1

Mar. 06 1330t0030 0926 yes yes - N 09 W 90 storm cond. --

Mar. 07 1100±0200 1122 (1128) yes yes - S 14 E 48 storm cond. --

Mar. 21 MED:PO7UDT0200 0035 (0053) yes yes X N 18 E 67 (22)0600±0300 2.5±.1 (a)

Mar. 23 1815±0005 1545 (1548) yes yes X N 18 W 62 2200±0100 2.9 .1

Mar. 25 140±0100 1202 (1226) yes yes X N 14 E 10 (26)0900±0200 4.3±.1

Mar. 29 0115±0005 0010 (0046) yes yes X N 13 W 37 0900±0300 1.8t:.2

Apr. 15 0440h0030 0413 (0419) yes yes X N 13 W 86 1000±0100 2.4t .2

May 30 0520t0030 0226 (0319) yes yes - S 08 W 30 2030±0100 4.0( .1

June 02 MED:P0930 0030 0618 (0631) yes yes X S 08 W 76 storm cond. --

June 14 1700±0030 1321 (1326) yes yes X N 21 E 42 230010100 2.3t .1

** IMPIV reentered the earth's atmosphere on May 3, 1969; IMPV was launched on June 21, 1969.



TABLE I - CONTINUED -4-

.5-1.1 MeV SOLAR FLARE ASSOCIATION 20-80 MeV 20-80 MeV

DATE ELECTRON Ho Time (UT) X-Rays Radio Burst MAX. TIME* SPECTRAL

ONSET TIME (UT) onset Max. cm Type II Flare Location (UT) dNDEX

Type and/or (d ~-E )

III IV dE

1970
June 26 0100!0015 (25)1834 (1839) yes yes -- N 10 E 11 perigee

June 28 MED:P2330±0090 1939 (2007) yes yes X N 20 E 23 (29)1200-2400 small I(b)

July 06 2200±0003 2135 (2140) yes yes X N 22 W 90 (07)0230±0100 3.0±.2

July 07 1715±0015 -- yes-1654 yes X Reg. 10809-WI00 2200±0100 2.4±.1

July 21 0630±0010 0440 (0505) yes yes X N 08 E 44 1200-1800 4.3-.1

July 23 1845±0005 1831 (1843) yes yes X N 09 E 09 2300±0100 4.2±.2

Aug. 12 2300±0200 2021 (2036) yes yes X N 11 E 90 (13)2130±0200 2.5±.2 (a)

Aug. 14 MED:P2100±0100 1604 (1635) yes yes X N 10 E 75 (15)1500±0100 4.8±.2

Nov. 01 1415±0015 1211 (1247) yes yes X N 16 W 50 1630±0030 small I(b)

Nov. 05 0430±0005 0308 (0330) yes yes X S 12 E 36 1600±0200 3.7±.1

Nov. 23 1240±0020 1054 (1102) yes N 08 W 66 (24)0130±0100 2.2±.2

Dec. 06 MED:P0140±0010 (05)2259 (2325) yes yes X N 16 W 45 0600-0800 small I(b) 0,

Dec. 12 0300±0100 (11)2205 (2241) yes yes X N 16 W 02 1700±0200 3.45±.15

1971
Jan. 14 r1052±0008 1045 (1048) yes yes S 09 W 55 1330±0030 2.7±.3

1136±0008 L1121 (1122) yes yes X " "

Jan. 24 2340±005 2309 (2316) yes yes X N 18 W 49 saturated --

Apr. 02 <0030 (01)1300 (1322) yes yes X S 19 W 12 1130±0030 4.0±.1

Apr. 06 1018±0005 0936 (0944) yes yes no obs. S 19 W 80 1500-1800 3.0±.2

Apr. 20 2000±0006 1924 (1946) yes yes X S 06 W 50 2400-2800 3.7±.1

Apr. 21 uncertain 0605 (0611) yes yes X N 18 W 46 Perigee --

(~0800±0100)
Apr. 22 1237±0008 0943 (0947) yes yes N 18 W 61 1500-1900 2.7±.1

May 13 1930±0015 1751 (1758) yes yes X N 11 W 86 (14)0230t0030 2.7±.2

May 14 1520±0020 1414 (1426) yes yes X N 04 E 11 2230±0030 3.25E.15

May 16(6) 1300±0003 -- no yes IVdK-1236 Reg.11294-W125 1500-2000 3.6±.2

June 29 2345±0015 2235 (2238) gap yes X N 18 W 22 (30)0600O0100 3.5±.1

Sept 01(7) 2000±0005 -- yes- 1930 yes X Reg.11482-W120 (02)0500 0900 2.0±.2

Oct. 03 MED:P1513+0015 1330 (1351) yes yes X N 14 E 14 (04)1000-1600 2.5±.5 (a)

*** The tel---------------emetry system of IMPV GSFC Cosmic ----------------Ray Exerme-----------t was ------------------off from ----------------- -------------- ---------------

*** The telemetry system of IMPV GSFC Cosmic Ray Experiment was off from 11/15/71 to 2/2/72.



TABLE I - CONTINUED -5-

.5-1.1 MeV SOLAR FLARE ASSOCIATION 20-80 MeV 20-80 MeV

ELECTRON Ho Time (UT) Radio Burst MAX. TIME* SPECTRAL
DATE X-Rays cm; Type II Flare Location (UT) INDEX y

ONSET TIME (UT) onset Max. Type and/or (d E )

III IV

1972
Feb. 22 MED:P0130+0030 0029 (0033) yes yes X N 03 W 02 0800±0100 3.0±.1

Mar. 05 MED:P1900±0200 F0807 (0816) yes 'yes X
L1136 (1141) yes yes X S 07 E 42 Perigee --

Mar. 11 MED:POil5±015 0020 (0024) yes yes S 11 W 32 0230±0030 small 1(b)

May 28 1452±0008 1310 (1324) yes yes X N 09 E 30 not identif. --

June 08(8 >0600<1700 -- yes 11317 Reg.11895~WllO 2100±0100 3.0±.1

June 12 2100±0200 1318 (1334) yes yes X S 11 E 52 (14)2130±0030 4.5±.I(a)

July 19(9 0510±00200 -- no yes X Reg.11976-W140 2100±0300 2.6±.1

July 22(9 0530±0030 no uncertain Reg.11976-W180 (25)0400-2400 2.5±.4(a)

Aug. 02 0515±0015 0316 (0410) yes yes X N 14 E 37 2330±0030 3.7±.1

Aug. 03 0230±0030 (02)1958 (2058) yes yes X N 14 E 29 1900±0200 4.2±.2

Aug. 04 uncertain 0617 (0640) yes yes X N 14 E 08 Saturated

Aug. 07 1540±0005 1449 (1534) yes yes X N 14 W 37 Saturated --

Oct. 29 2005±0015 1544 (1747) yes yes X S 10 E 02 (30)0000±0100 4.0±.2

Oct. 30 0530±0030 (29)2345 (2349) yes yes X S 09 W 04 2230±0100 4.0±.2

Nov. 25 0903±0005 0820 (0930) yes yes X S 06 W 44 1300±0100 --

Nov. 28 0400±0010 0355 (0403) yes yes X S 08 W 80 1100±0100 3.1±.1

(a) The spectral index 7 was measured at a time of maximum intensitymore than one day after the particle onset time.

(b) The small intensity of those events makes difficult the measurement of the proton spectrum between 20 and 80 MeV

since above 30 MeV the galactic component is not negligible compared to the solar components.

(1) This event could not be associated either with an X-ray burst or with a radio burst. However the strong activity

of the region 8818 during the passage on the visible disc., and the relative amplitude and onset time respectively
on Pioneer 6 and 7 and IMPIV, at different azimuthal positions, make this region a most probable candidate. It has

been also estimated as a probable association by R. E. Gold et al., (979.

(2) also associated with region 9091 by G. M. Simnett, 97Z)

(3) strongly evidenced by radio observations, S. F. Smerd, 1970. Also discussed by McCracken et al.,(1971)
(4) Association discussed by C.J. Thomas (1970) also compilation of this event published by D.B. Bucknam and J.V.

Lincoln (1971).
(5) Most probable association. The absence of radio burst associated with this flare makes this association uncertain.

Also regarded as a possible candidate by Barouch et al. (1971).



FOOTNOTES - CONTINUED: -6-

(6) A type IV radio burst was observed by Boulder and Sagamore Hill observatories. Complementary information on
the position provided by the radioheliograph of Nancay (France) (M. Pick, private communication, 1971) shows
that the events could be associated with region 11294 which passed the limb two days before the particle onset.

(7) Association discussed by M.A. VanHollebeke , et al., J97).
(8) The active region 11895 which produced several particle events passed the limb on June 07. Therefore, a flare

in this region may be regarded as a good candidate. However, no position measurement of the radio burst has
been made.

(9) Spectral observations by the Culgora observatory (Australia) shows that while there was no position observation
at the time of the Type II, the spectra of both radio events (0355.7 UT and 0420 UT) are compatible with
behind-the-limb activity (S.F. Smerd, private communication). Furthermore, the region 11957, precursor of
the region 11976, producer of the large August solar flares, showed some activity and a very complex magnetic
field at its passage on the limb on the 15th (H. Zirin and K. Tanaka, 1972) which may be compatible with strong acti-
vity a few days later.

(10) The time profile of this event is reminiscent of some other backside events. In such a case, the region would
be the most probable candidate.
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TABLE II

Distribution of the Number of Events as a Function of Maximum Particle Intensity

20-80 MeV Proton

Maximum Intensity >10- 4 - 0-  >10- - 10 -  >102 - 101 >101 - 100 >100 - 101

(particles/cm2 - sec -Sr-MeV)

Number of Detected 65 46 32 13 7
Events

Number of Identified 40 27 20 13 7
Events
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FIGURE CAPTIONS

Figure 1. Distribution of the - 125 identified solar events with respect

to the heliolongitude of the associated flare. The definition

of an event requires that the differential flux of proton

20 MeV exceeds 10-4 particles/cm2 - sec-sr-MeV.

Figure 2. Examples of 3 classical particle time histories. The onset

times of the .5 - 1.1 MeV electrons are used to identify the

associated flare. An arrow or a dashed box at maximum particle

intensity indicates the time interval used to determine the

spectral index, yp, for the 20 - 80 MeV energy range.

Figure 3. Examples of micro-events or complex event time profiles. The

same convention applies here as in figure 2. Included on these

figures are the .9 - 1.5 MeV and the 6 - 19 MeV protons time

histories which help to distinguish the non-velocity dependant

effect,

Figure 4. Time histories and spectral determination for the April 20

and April 22, 1971 solar particle events. These are

examples for which the spectrum can be determined over

the same time interval from 4 to 80 MeV. In the case of the

April 22 event, a differential power law in kinetic energy

fits the data from 4 to 80 MeV. Note, however, the presence

of a knee between 15 and 25 MeV in the case of the April 20

event. There might be an effect of particle anisotropy which

was directed out of the ecliptic plane.
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Figure 5. The time histories of the 20 - 30 MeV, 30 - 50 MeV and 50 - 80

MeV for four events with fast decay times. The source spectra

as derived from each of the individual maximum (dashed

diamonds) are shown to be identical to that obtained using a

single time interval after the 20 - 80 MeV maximum intensity.

This illustrates that over this limited energy range the energy

dependence of the interplanetary diffusion coefficient is sufficiently
weak.

Figure 6. The spectra of two events at the time of maximum intensity

as determined from both OGO V and IMP V are shown for com-

parison. The IMP V detector points in a direction perpen-

dicular to the ecliptic. OGO V is always looks away from

the earth in the ecliptic plan. In April 1971 OGO V was

pointingin the direction of the nominal field line, and in

November 1969, it was pointing in the direction - 600 E from

the sun-earth line. A small variable anisotropy which might

still be present at the time of maximum did not affect the

distribution of the particles.

Figure 7. A spectral shape of the form J = Joe-P /PO is shown as a

possible alternative for 3 events with different spectral

slopes. Whenever a unique spectrum could be determined over

an energy range from 10 - 80 MeV, a power law in differential

kinetic energy gave a better fit.

Figure 8. 20 differential energy spectra are shown as representatives

of the spectra determined for the 90 events included in this
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study, The spectral index yp and the time of measurement

near the maximum particle intensity are shown, These values

are also listed in Table I for all events.

Figure 9. Distributions of the spectral index yp determined at the

time of maximum proton intensity in the 20 - 80 MeV and the

4 -20 MeV range. These values of yp show a Poisson-like

distribution with an average of 2.9 for the

20 - 80 MeV range and 2.4 for the 4 - 20 MeV.

Figure 10. Variation of the spectral index yp in the 20 - 80 MeV range as a

function of the heliolongitude X . The open circles are "long

rise time events" with a rise time longer than 24 hours. For

these events, it is felt that effects of interplanetary pro-

pagation are not negligiable. The dashed contour lines

enclose 92% of all the other events. The solid line is a

least square fit obtained for them. yp (X) can be repre-

sented approximately by y (X ) = 2.7 [1 + A-1.

Figure 11. Distribution of the number of events as a function of the

spectral index yp at 20 - 80 MeV and in the preferred long-

itude range X( = 20 - 800W.

Figure 12. Variation of the Differenital energy spectral index yp in the

4 - 19 MeV range with heliolongitude . There appears to

be no systematic variation.

Figure 13. The difference A TM of the time between onset of 20 - 80 MeV

proton and maximum particle intensity is plotted as a function
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of the heliolongitude. The solid line is a least square fit

through the data. It shows a mimimum at N 500 ± 300 West of

the central meridian.

Figure 14. Distribution of the number of events in the 20 - 80 MeV

energy range as a function of the rise time Tr for events

in the longitude range hg = 20 - 80*W. Tr is the time between

maximum particle intensity and the assumed acceleration (i.e.

x-ray onset time or the equivalent).

Figure 15 Distribution of the rise time Tr as a function of the spectral

index 7p of 20-80 MeV for events in the longitude range X =

200 W - 800 W. There is a tendency for a long Tr to be

associated with a small 7.

Figure 16 Variation of the rise time Tr of 20-80 MeV protons with the

spectral index 7p for all events with T < 24 hours. The
p r

dashed contour lines are the envelope of the data showing a

linear relation of the form 7p = aT + b
p r 1'

Figure 17 A plot of the number of events per unit of intensity AN/AI

as a function of the 40 MeV maximum proton intensity. I is

defined as I = dJ/dE in particles/cm 2-sec-sr-MeV The two curves

are for all detected events and the identified solar particle

events respectively.

Figure 18 Variation of the maximum particle intensity as a function of

heliolongitude for - 40 MeV protons. The data indicated by

open circles are deduced from > 30 MeV and > 60 MeV proton inten-

sity of the APL experiments (Bostrom et al.).
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Figure 19 Distribution of the number of events per unit of intensity

as a function of the maximum proton intensity at 40 MeV for

two heliolongitude ranges: X. = 20'W- 600 W and X. = 600E-

20* E. A solid and a dashed line fit the data in those

respective longitude ranges with the same slope a 1.10 + .05.
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5 - 20-80 MeV PROTONS
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